Runoff generation in a steep, soil-mantled landscape

نویسندگان

  • David R. Montgomery
  • William E. Dietrich
چکیده

[1] Scale and slope dependence of hydrologic response are investigated for two channel network source areas (unchanneled valleys) in the Oregon Coast Range. Observations of response to both natural and applied precipitation reveal that runoff occurred as subsurface flow in which water passed through partially saturated soil, into the shallow fractured bedrock, to emerge as subsurface partial source areas near the channel head. The two dominant approaches to modeling subsurface flow in steep topography, routing of Darcy or fracture flow and the hydrologic similarity approximation of TOPMODEL, respectively predict either a strong slope dependence or no slope dependence to timescales of subsurface runoff generation. Compilation of data from our Coos Bay study sites with observations reported previously elsewhere indicates weak area dependence but no slope dependence in the lag-to-peak and discharge recession constants. This finding supports the interpretation that patterns of antecedent soil moisture and vadose zone characteristics control response times of runoff generation by subsurface storm flow. As slope should influence lateral flow routing once subsurface saturation develops, we conclude that the hydrologic response of steep catchments appears to be insensitive to slope because the controlling timescale is that of the vertical unsaturated flow.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Scale effects on headwater catchment runoff timing, flow sources, and groundwater-streamflow relations

[1] The effects of catchment size and landscape organization on runoff generation are poorly understood. Little research has integrated hillslope and riparian runoff investigation across catchments of different sizes to decipher first-order controls on runoff generation. We investigated the role of catchment sizes on riparian and hillslope dynamics based on hydrometric and tracer data observed ...

متن کامل

Piezometric response in shallow bedrock at CB1: Implications for runoff generation and landsliding

[1] Experimental observations comparing two steep unchanneled valleys in the Oregon Coast Range, one intensively instrumented (CB1) and the other monitored for runoff but which produced a debris flow (CB2), shed light on the mechanisms of shallow flow in bedrock, its interaction with the vadose zone, and its role in generating landslides. Previous work at CB1 led to the proposal that during sto...

متن کامل

Distributed hydrological modelling of total dissolved phosphorus transport in an agricultural landscape, part I: distributed runoff generation

Successful implementation of best management practices for reducing non-point source (NPS) pollution requires knowledge of the location of saturated areas that produce runoff. A physically-based, fully-distributed, GISintegrated model, the Soil Moisture Distribution and Routing (SMDR) model was developed to simulate the hydrologic behavior of small rural upland watersheds with shallow soils and...

متن کامل

Runoff production on forest roads in a steep, mountain catchment

[1] This study investigated how roads interact with hillslope flow in a steep, forested landscape dominated by subsurface flow and how road interactions with hillslope flow paths influence hydrologic response during storms in a second-order catchment. Runoff was measured continuously from 12 subcatchments draining to road segments and covering 14% of a 101-ha, second-order catchment (WS3) in th...

متن کامل

Evidence for nonlinear, diffusive sediment transport on hillslopes and implications for landscape morphology

Steep, soil-mantled hillslopes evolve through the downslope movement of soil, driven largely by slope-dependent transport processes. Most landscape evolution models represent hillslope transport by linear diffusion, in which rates of sediment transport are proportional to slope, such that equilibrium hillslopes should have constant curvature between divides and channels. On many soil-mantled hi...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2002